深度强化学习的人工智能在游戏中的运用:游戏AI入门及AI优化指南
2.putNewAction,有的怪物AI会把不同血量怪物掌握的不同技能再写一遍,这样的作法十分冗余,也让AI逻辑不利于阅读,利用插入优先行为的形式,在技能达到触发条件时,插入到怪物的技能列表里,让整个怪物逻辑更加清晰。 3.SkillFlag,起到的是保护作用,设置这样一个参数,是为了当新技能不会被重复加入,第一次加入技能后,该参数自动变化,后面不会再插入该技能。 当然,在怪物 AI的子图中还有很多小细节需要注意,但篇幅有限,仅先展开到这里。 四、深度强化学习的人工智能在游戏中的运用。 这一部分仅仅作为简单的分享,本人也并没有制作深度强化学习人工智能的能力,在与该类AI合作的过程中,能够知道现在这类理论AI在游戏中能运用到什么水平。 4.1 深度学习的应用场景 深度学习机器人需学习、调整3个月左右(参照简单RPG角色,时间受角色信息、样本数量、场地因素等等多方面限制),能够达到单人优秀玩家的水平。 ![]() 如果想见识AI能达到的水平,可以参考逆水寒的流派挑战 至于简单的多人合作也可以做到,但是复杂场景中理论AI的运用会受到很高的局限性。 所以AI在游戏中以Lua行为树的形式存在应该还要很久,当然你也可以采用理论AI配合脚本AI的形式,所有玩法形式都由脚本控制,载入战斗状态时调用理论AI即可。 来源:知乎专栏 (编辑:二游网_173173游戏网) 【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容! |